Note
Go to the end to download the full example code.
6.7-kW SyRM#
This example simulates sensorless vector control of a 6.7-kW SyRM drive. Square-wave signal injection is used with a simple phase-locked loop.
import numpy as np
import matplotlib.pyplot as plt
from motulator.drive import model
import motulator.drive.control.sm as control
from motulator.drive.utils import (
BaseValues, NominalValues, plot, Sequence, SynchronousMachinePars)
Compute base values based on the nominal values (just for figures).
nom = NominalValues(U=370, I=15.5, f=105.8, P=6.7e3, tau=20.1)
base = BaseValues.from_nominal(nom, n_p=2)
Configure the system model.
mdl_par = SynchronousMachinePars(
n_p=2, R_s=.54, L_d=41.5e-3, L_q=6.2e-3, psi_f=0)
machine = model.SynchronousMachine(mdl_par)
mechanics = model.StiffMechanicalSystem(J=.015)
converter = model.VoltageSourceConverter(u_dc=540)
mdl = model.Drive(converter, machine, mechanics)
Configure the control system.
par = mdl_par # Assume accurate machine model parameter estimates
cfg = control.CurrentReferenceCfg(
par, nom_w_m=base.w, max_i_s=2*base.i, min_psi_s=.5*base.psi)
ctrl = control.SignalInjectionControl(par, cfg, J=.015, T_s=250e-6)
# ctrl.current_ctrl = control.sm.CurrentControl(par, 2*np.pi*100)
# ctrl.signal_inj = control.sm.SignalInjection(par, U_inj=200)
Set the speed reference and the external load torque.
# Speed reference
times = np.array([0, .25, .25, .375, .5, .625, .75, .75, 1])*4
values = np.array([0, 0, 1, 1, 0, -1, -1, 0, 0])*.1*base.w
ctrl.ref.w_m = Sequence(times, values)
# External load torque
times = np.array([0, .125, .125, .875, .875, 1])*4
values = np.array([0, 0, 1, 1, 0, 0])*nom.tau
mdl.mechanics.tau_L = Sequence(times, values)
Create the simulation object and simulate it.
sim = model.Simulation(mdl, ctrl)
sim.simulate(t_stop=4)
Plot results in per-unit values.
# Plot the "basic" figure
plot(sim, base)
# Plot also the angles
mdl = sim.mdl # Continuous-time data
ctrl = sim.ctrl.data # Discrete-time data
ctrl.t = ctrl.ref.t # Discrete time
plt.figure()
plt.plot(
mdl.machine.data.t,
mdl.machine.data.theta_m,
label=r"$\vartheta_\mathrm{m}$")
plt.plot(
ctrl.t,
ctrl.fbk.theta_m,
ds="steps-post",
label=r"$\hat \vartheta_\mathrm{m}$")
plt.legend()
plt.xlim(0, 4)
plt.xlabel("Time (s)")
plt.ylabel("Electrical angle (rad)")
plt.show()
Total running time of the script: (0 minutes 12.633 seconds)